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James  L. Monroe I 

Received October 5, 1987 

We establish a variety of results using the Holsztynski-Slawny reduction 
method to study various ferromagnetic, Ising spin systems. The results range 
from a new proof of the lack of a first-order phase transition for certain infinite 
range, pair interaction, one-dimensional systems to a study of certain three- 
dimensional systems having many-body interactions. 
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1. I N T R O D U C T I O N  

In a series of papers Slawny (1) and Holsztynski and Slawny ~2'3) have 
established a procedure whereby one ferromagnetic, Ising spin system can 
be related to another ferromagnetic, Ising spin system. Many times the 
original system appears to be "reduced" to a simpler, second system; hence, 
we refer to the method as the HS reduction method. This method has 
recently been presented by Slawny as part of a review article, (4) where he 
states that, "although the proofs involve mathematics not familiar to 
specialists in phase transitions, the final results have a simple enough 
formulation and the computational criteria are easy to apply." Here we 
attempt to illustrate the power and ease of the approach by using this 
single method to obtain a number of results obtained by a variety of 
methods. In doing so we also extend in some cases these previous results. 

The HS reduction method normally involves systems with many-body 
interactions which have for some time been of interest for many reasons. 
Interest ranges from obtaining experimental evidence of the presence of 
such interactions in specific physical systems (5'6) to the mathematical 
properties of model systems with these interactions present. (v'8) 
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Following this introduction, Section 2 contains an introduction to the 
notation used throughout the paper and a statement of the general HS 
theorem. This material is in general also contained in the Slawny review 
article, (4) although one technical change of significance will be noted. 
Section 3 then follows with a variety of applications of the method and 
Section 4 contains some concluding remarks. 

2. N O T A T I O N  A N D  M A I N  T H E O R E M  

We start by defining a general ferromagnetic Ising system. Consider a 
finite set of sites A, which is a subset of the v-dimensional lattice Z v. On 
each site in A is placed a spin variable ~r with ~r = + 1 and ~r; representing 
the spin on the ith site, i~A. We will consider systems with + boundary 
conditions, which means all spins outside of A have a spin variable ~r = +1. 
The Hamiltonian of the system is 

H ( { a } ) = - ~  J s~  B (2.1) 
B E B  

where g is the collection of finite subsets of Y v, JB~>O, {a} is a con- 
figuration of the system, and 

as  = 1-I cr, (2.2) 
ieB 

The thermal average of ~r A is 

( aA)  ~ = Z  1 ~ aAe-/~,/~{o}) (2.3) 
{o} 

where Z is the partition function, the superscript on the brackets denotes 
the +boundary  conditions, the subscript the system A, and fl = 1/kT.  We 
will be interested in the infinite-volume limit of ( a a ) +  denoted by (era) + 

To use the HS reduction method, one needs a way to represent subsets 
of Z. We do this with the "polynomial" notation of Holsztynski and 
Slawny, where a site i =  (al, az,..., av) of 7/~ is represented by 

i = X ; , X ; 2 . . . X ~ v  v 

For one-, two-, and three-dimensional systems we will set XI = X, X2 = Y, 
and )(3 = Z .  Thus, the site (3, 1, - 4 )  will be represented by X 3 y / z  4. Sub- 
sets of sites of 7/v then become polynomials in X, Y, and Z, e.g., the set of 
sites (3, 1, - 4 ) ,  (3, 1, 5), and (4, 0, 7) is represented by 

X 3 Y / Z  4 q- X 3 Y Z  5 "-F X 4 Z  7 

and hence each set B e B of (2.1) has a polynomial representation. 
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We restrict the Hamiltonian to translation-invariant interactions and 
define a fundamental family of bonds to be a set •0 E ~ such that any bond 
B ~ B is a translation of exactly one element of B0. As an example, for the 
two-dimensional, nearest neighbor, Ising model on a square lattice in zero 
magnetic field, Bo = [-1 + X, 1 + Y] using the polynomial notation. 

Next we introduce the idea of the greatest common divisor (g.c.d.) of a 
set of polynomials and to do so we need to formulate the rules of factoring 
the polynomial representations. Because the coefficients of the terms 
making up the polynomials representing collections of sites are all one, 
multiplication and addition of terms are multiplication and addition in a 
two-element field, i.e., 0 + 1 = 1 ,  0 + 0 = t + 1 = 0 ,  0 . 1 = 0 ,  and 1 - 1 = 1 .  
Thus, for example, (1 + X) 2 = 1 + X 2 and 1 + X +  Y+ X Y =  (1 + X)(1 + Y). 
For  this set of polynomials the g.c.d, is (1 + X). 

We are now ready to state the major result of the HS reduction 
method. 

Theorem. Let 

H({er})= - ~ J~a~ (2.4) 
B E B  

be translation-invariant and ferromagnetic. Let D=g.c .d .  B; then the 
"reduced" Hamiltonian is 

H ' ( { o - } ) = -  • JB0"B,, where B ' = { B ' : B ' = B / D ,  B e B }  (2.5) 
B ' E B '  

and require 

~, n~,JB < oo (2.6) 
B e  ~0 

where nw is the number of sites in the set B'. Then 

P(flH) = P(flH') (2.7) 

<aD.A> + = <aA> '+ (2.8) 

<~a> + = 0  if A is not divisible by D (2.9) 

Furthermore, at low enough temperatures <ao> + :/=0. 
Here P(flH) and P(flH') are the free energy of the original and the 

reduced systems, respectively, and the prime on the thermal average in 
(2.8) means that the average is with respect to the reduced system. 

It should be noted that the above theorem differs slightly from the 
theorems in the Slawny review article. (4) In particular, the review article (4) 
contains the requirement 

J ~ < o o  (2.10) 
B : O e B  
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while in the above statement we have condition (2.6). Condition (2.6) is 
more restrictive than (2.10) and the correct statement of the theorem 
should contain (2.6). (9) For the systems used as examples in the review 
article, (4) all of which had finite-range interactions, condition (2.6) is not 
needed; however, its importance when considering infinite-range inter- 
action systems will be illustrated in section 3.2. 

3. A P P L I C A T I O N S  

We now apply the theorem to a variety of ferromagnetic Ising spin 
systems. In doing so, our emphasis will be on showing the power and com- 
putational simplicity of the HS reduction method by reproducing and 
expanding the results of a number of previous authors who have used a 
variety of approaches. 

3.1. Trivial Systems.  

One area where the HS reduction method can be used and where the 
word reduction is especially appropriate concerns systems recently studied 
by Mattis and Galler (1~ and significantly expanded by Horiguchi and 
Morita. IH) In the latter reference the authors consider spin systems having 
"only one kind of spin cluster." By this is meant that the system has multi- 
spin interactions, all of which are translations of one basic multispin 
interaction. No restriction exists on the dimensionality of the system. The 
above authors directly compute by standard expansion methods the free 
energy and spin correlation functions for this set of systems. 

In the terminology of the HS reduction method these systems are 
exactly those where the fundamental family of bonds consists of only one 
element. Such systems have been denoted by Holsztynski and Slawny as 
trivial systems. The systems can all be reduced to a collection of indepen- 
dent single-spin systems with an external field equal to the interaction 
strength of the original multispin interaction acting on each spin. For such 
systems one then immediately has that the free energy per site is 
ln[2cosh(flJ)], the correlation functions are either zero or products of 
tanh(flJ), and there is no phase transition. 

Using a different approach from any of the above papers, Griffiths and 
Wood (~2~ pointed out the lack of a phase transition in certain specific 
systems which fall into this class of systems, e.g., a two-dimensional square 
lattice with four-body interactions among the spins on the elementary 
plaquettes. The immediate results mentioned above are contained in Ref. 3. 
This material, however, was apparently unknown to the authors of the 
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more recent papers and has been included here to bring together the 
similar results and to emphasis the directness of the HS reduction method. 

In the case of the trivial systems the original system reduces to a 
collection of independent systems each consisting of a single site. It is easily 
seen from the HS reduction method that one can construct a class of more 
complicated systems that still have no phase transition. This is the class of 
systems that reduce to one-dimensional finite-range interaction systems. All 
that one needs is that only terms in a single variable X, Y, Z, etc., are not 
part of the g.c.d. For example, an original system with interactions 
(1 +X)(1 + Y) and (1 +X)(1 + y2) reduces to 1 and (1 + Y), or in three 
dimensions (1 + X)(1 + Y)(1 + Z) and (1 + X)(1 + Y2)(1 -k-Z) reduce to the 
same system. 

3.2. One-Dimensional Infinite-Range Interaction Systems. 

A very different area where the HS reduction method can be applied 
concerns one-dimensional, infinite-range interaction systems. For finite- 
range, one-dimensional systems one has no phase transition, but with 
infinite-range interactions, Dyson (13) has proven the existence of nonzero 
spontaneous magnetization in certain cases, while Ruelte (14) has proven the 
absence of a first-order phase transition in certain other cases. 

Consider a system with infinite-range pair interactions. We have 
as the polynomial representation for such interactions t + X ,  1 + X  2, 
I + X  3 . . . . .  Now 1 - t - X  n for any integer n > 0  can be written as 
( I + X ) ( I + X +  +Xn-~) ,  and therefore for a pair interaction system, 
(1 + X) is the g.c.d. Hence, the original system with nearest neighbor, next 
nearest neighbor,..., etc., pair interaction can be "reduced" to a system with 
one-body, two-body, three-body ..... interactions as long as condition (2.6) 
is met. Whether this condition is met depends on the rate of falloff of the 
interaction strength. For interactions going as J / r  ~ one has, for (2.6), 

1 
J ~ n ~  (3.1) 

n = l  

and thus (2.5) requires e > 2. Therefore, for interactions falling off faster 
than 1/r 2 the HS theorem of Section 2 can be applied. Since (1 + X) is the 
g.c.d, of the original system, ( a i )  + =0.  Furthermore, one has a general 
result that if the g.c.d, consists of an even number of terms as (1 + X) does, 
then 

( a a )  + = 0  (3.2) 

if IAI, the number of sites in A, is odd. This is because no polynomial with 
an odd number of terms can be factored into two terms either of which has 
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an even number of terms, due to the characteristics of addition and mul- 
tiplication in a two-element field. This is similar to a part of the results of 
Lebowitz,/15) who, using correlation inequalities, looked at the equivalence 
of different order parameters for Ising ferromagnets and showed that 
( O ' i )  + = 0  implies ( aA)  + = 0  for ]A[ odd. 

Since Martin-Lof (16) has shown that 

( aA)  + = lim ( a  A)b h (3.3) 
h ~ O +  

where b denotes either + ,  - ,  free, or periodic boundary conditions and h 
is the external magnetic field, we have for A = i that (a~) + equals the 
spontaneous magnetization and by the HS reduction method we have 
shown there is no spontaneous magnetization if the infinite-range pair 
interactions fall off faster than 1/r 2. Note that if condition (2.10) needs to 
be satisfied and not (2.6), then one would have a lack of spontaneous 
magnetization for all systems with pair interactions falling off faster than 
1/r rather than 1/r 2. Yet Dyson (13) has shown that such is not the case, so 
here we see the significance of the more restrictive (2.6). 

3.3. Suzuki 's Three-Dimensional  Ising Models  

Suzuki, (17) using the nonlinear a-z  transformation 

(T i , j ,k  = ~ i , j , l '~  i,j,2i, j , k  (3.4) 

studied the three-dimensional Ising model on 7/3 with 

9 4  = - -  2 [ J l Y  i, j , k  f f  i, j , k  + 10"i+ l , j ,  k f f  i + 1,j ,k + 1 
i , j ,k  

+ J'ai, j.kai, j,k+ lai,;+ 1,~ai,;+ 1.~+ 1] (3.5) 

Using the polynomial representation, the fundamental family of bonds can 
be written as (1 +Z)(1  + X )  and (1 +Z)(1  + Y). Since (1 + Z )  is the g.c.d., 
the model reduces to a collection of independent two-dimensional Ising 
models with nearest neighbor (hereafter n.n.) pair interactions in the X - Y  
planes. From the general theorem for the original system (3.5) one has 
(a,-) + = 0  and thus the spontaneous magnetization is zero for all tem- 
peratures. The order parameter for the original system is (aij,kai, j,k+~) + 
and this is equal to the spontaneous magnetization of the two-dimensional 
Ising model due to the above reduction. Most of the other results of Suzuki 
follow from the above reduction and the known results on the two-dimen- 
sional n.n. Ising model. 
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Three particular items are worth noting. First, Suzuki considers 
adding to (3.5) a pair interaction 

H 2  = - ~ J"o i ,  j ,~ai, j,l, + 1 (3.6) 
i,j,k 

with J" > 0. Now the fundamental family of bonds has added to it the term 
(1 + Z) and the system reduces to the two-dimensional n.n. Ising model 
with an external magnetic field equal to J". No phase transition thus 
o c c u r s .  

Second, Suzuki looks at the two-dimensional system 

H =  - - J 2 G i ,  jGi, j + l G i + l , j G i + l , j + l - - f 2 f f i , j f f i ,  j+2  (3.7) 
i,j i,j 

We simply mention that this system has been used as an example in 
Slawny's review article {4~ and is reducible to the n.n. pair interaction 
system. 

Finally, the third variety of system Suzuki mentions is a 2n-body 
interaction system on a Z n lattice where the 2 n sites involved in the inter- 
action are those sites on the vertices of the elementary hypercubes of the 
n-dimensional lattice. Using the a-v transformation n -  1 times, he shows 
that there is no phase transition. However, this is just the type of system 
considered in Section 3.1; it consists of only one term in the fundamental 
family of bonds and hence is what was termed a trivial system. We know 
immediately that no phase transition occurs and we have the value of all 
correlation functions. 

3.4. The Debierre and Turban Set of M a n y - B o d y  Interact ion 
Systems 

In previous examples we normally began with a system that had been 
shown to be reducible to a system for which one has a set of known results 
and these results were then applied to the original system. Here we reverse 
that situation. Debierre and Turan ~18) studied the following set of 
ferromagnetic many-body interaction systems. Consider a square lattice 
with Ising spins on each site, o = _+ 1, and Hamiltonian 

m - - 1  

H=-JLffi, j~i,j+l-Jt2 H Cri+n,J (3.8) 
i,j i,j n = 0 

Hence, one has nearest neighbor pair interactions in the vertical direction 
and m-body interactions in the horizontal direction on the lattice. They 
studied such systems using a mean-field approach, a phenomenological 
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renormalization group approach, and a duality approach. All such systems 
are self-dual and when the phase transition is unique the critical tem- 
perature is given by 

sinh(2flfl) sinh(2fl~J')= 1 (3.9) 

so that the critical temperature does not depend on the value of m. Based 
on their other approaches, the authors conjecture that the order of the 
phase transition does depend on m and that the m = 3 system belongs to 
the universality class of the q = 4 Potts model and gives the border between 
those systems with first- and second-order phase transitions, i.e., for m > 3 
one has a transition that is first order at the critical point. Monte Carlo 
simulations of these systems give results consistent with this conjecture. (~9) 

The above set of systems are the reduced version of the following set of 
systems. Consider again a set of Ising spins, a = _+ 1, on a square lattice 
with Hamiltonian 

_ j ,  H =  - - J ~ a i ,  j(~i+l,jffi, j+lffi+l,j+ 1 ~(~i ,  j f f i+n,j  
i,j i,j 

(3.10) 

This system has as its fundamental family of bonds (1 + X)(1 + Y) and 
(1 + iV'). Since, as we saw in Section 3.2, (1 + X ~) = (1 + X)(1 + X +  X n- 1), 
then we have this set of systems reducing to the previous set of systems. 
With this set of systems the transitions become first or second order, 
depending on the range of the pair interaction as opposed to the number of 
sites involved in the many-body interaction of (3.8). We mention this 
because it may be easier to either prove or disprove the conjecture of 
Debierre and Turban. 

4. C O N C L U S I O N  

At this point we note that obviously one can endlessly construct 
many-body interaction systems that reduce to previously solved Ising spin 
systems, e.g., the eight-vertex model, the Baxter-Wu model, etc. We have 
not done so because many of these initial systems are rather contrived and 
artifical. Rather than do this, we have tried to direct attention to such 
systems where both initial and reduced systems have been previously 
studied by various authors. 

It is hoped that this presentation of the HS reduction method, general 
theorem, and sample of results has shown the power and simplicity of the 
method and has bridged the gap between some of the previous, less 
mathematical papers and the more mathematical papers of Slawny and 
Holsztynski. 



Ferromagnetic Ising Models 203 

A C K N O W L E D G M E N T S  

I would like to thank Prof. J. Bricmont for making me aware of the 
Slawny review article and Prof. J. Slawny for encouraging discussions. I 
also thank the Pennsylvania State University for a grant from the Faculty 
Scholarship Support Fund. 

REFERENCES 

1. J. Slawny, Commun. Math. Phys. 46:75 (1976). 
2. W. Holsztynski and J. Slawny, Lett. Nuovo Cimento 13:534 (1975). 
3. W. Holsztynski and J. Slawny, Commun. Math. Phys. 66:147 (1979). 
4. J. Slawny, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and 

J. L. Lebowitz, eds. (Academic Press, 1986). 
5. J. A. Barker, Phys. Rev. Lett. 57:230 (1986). 
6. H.-Y. Kim and M. W. Cole, Phys. Rev. B 35:3990 (1987). 
7. M. Kolb and K. A. Penson, J. Phys. A: Math. Gen. 19:L779 (1986). 
8. J. L. Monroe, J. Phys. A: Math. Gen. 19:2499 (1982). 
9. J. Slawny, private communication. 

10. D. C. Mattis and R. Galler, Phys. Rev. B 27:2894 (1983). 
11. T. Horiguchi and T. Morita, Phys. Lett. 105a:57 (1984). 
12. H. P. Griffiths and D. W. Wood, J. Phys. C: SOlid State Phys. 6:2533 (1974). 
13. F. J. Dyson, Commun. Math. Phys. 12:91 (1969). 
14. D. Ruelle, Commun. Math. Phys. 9:267 (1968). 
15. J. L. Lebowitz, J. Stat. Phys. 16:3 (1977). 
16. A. Martin-Lof, Commun. Math. Phys. 24:253 (1972). 
17. M. Suzuki, Phys. Rev. Lett. 28:507 (1972). 
18. J. M. Debierre and L. Turban, J. Phys. A: Math. Gen. 16:3571 (1983). 
19. H. W. J. Blote, A. Compagner, P.A.M. Cornelissen, A. Hoogtand, F. Mallezie, and 

C. Vanderzande, Physiea 139A:395 (1986). 


